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Squeezing in a detuned parametric amplifier 
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Department of Physics, University of Waikato, Hamilton, New Zealand 
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Abstract. The effect of detuning on the squeezing obtained in a prototype model for 
squeezing, namely the degenerate parametric amplifier, is investigated. A squeezed 
minimum uncertainty state is only obtained in a set of variables related to the original 
variables by a time dependent transformation. The required transformation is obtained 
using a symplectic decomposition of the dynamic evolution matrix. 

1. introduction 

Recently there has been much discussion of a special class of oscillator minimum 
uncertainty states known as squeezed states (Robinson 1975, Stoler 1970, 1971, Lu 
1971, 1972, Yuen 1976 and Hollenhorst 1979). These are states which have reduced 
fluctuations in one field quadrature, when compared with coherent states. Squeezed 
states are also known as two-photon coherent states. 

A number of possible exciting applications of squeezed states have recently been 
suggested. One application proposes using squeezed states of light in optical communi- 
cation systems to give a signal-to-noise ratio better than the quantum limit for coherent 
light (Yuen and Shapiro 1978, Shapiro et al 1979). Another suggested application is 
in the laser interferometric detection of gravitational radiation (Caves 1981). 

In view of such applications it is obviously of great importance to devise feasible 
experimentally realisable schemes to generate squeezed states. Among the earliest 
models for squeezed-state generation was the degenerate parametric amplifier (Stoler 
1970, 1971). Previous analysis of squeezing in this model has been restricted to the 
case of resonance between the pump and the degenerate signal/idler modes (Milburn 
and Walls 1981, Lugiato and Strini 1982, Milburn and Walls 1983). It is the object 
of this paper to consider the consequences of a non-resonant interaction. 

2. Properties of squeezed states 

We shall briefly describe the mathematical properties of squeezed states. A squeezed 
state may be defined as follows (Caves 1981), 

la7 6) = m4S(S)IO) (1) 

where S ( 5 )  is the squeeze operator defined by 
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where 6 = re" and D ( a )  is the displacement operator 

D( a) = exp( aa' - a * a )  

and a, at are bose annihilation and creation operatorsl [ ~ , ~ a ' ]  = 1.  
If we now define the quadrature phase operators X1, X, by 

(3)  

a = r i , + i r i ,  (4) 

then kl obey the usual canonical commutation relation [kl, k2] = i/2 and gt = 2;. 
If we further define the variances V ( g I )  by 

V ( 2 J = ( X ? ) - ( r i J 2  ( 5 )  

V ( 2 , )  V ( k 2 )  3 1/16 (6) 

V( PI) = e-2r V (  P2) = a  e2r (7)  

we see that the quadrature phase operators obey the uncertainty relation 

while the coherent states have V ( k , )  = V ( 2 2 )  = 1/4,  the squeezed states )a,[) have 

where 9, + i P2 = (k, + i i 2 )  e-'e'2 is a bose operator corresponding to a rotated com- 
plex amplitude (see appendix) an$ r = 161. We note that the squeezing is not obtained 
directly in the original variables XI. This is a characteristic feature of general squeezed 
states. 

A more general mathematical description of squeezed states in n dimensions 
considers squeezed states to be a subset of the generalised coherent states for the 
symplectic group Sp(2n; R) (Milburn 1984). 

A simple pictorial representation of a squeezed state may be obtained in terms of 
the corresponding Wigner function. 

In the appendix we show that the Wigner function for a squeezed state has the form 

~ ( x , ,  x 2 )  = (2/.rr) exp{-2[(x1 -z,)' e+2'+(x2-22)2 e-2r]} = (2/?r) e x p { - ~ / 2 }  (8) 

where Z I  = (2J. 
If we plot the contour of W(xl, x 2 )  defined by Q = 1, weAobtain an ellipse in ( x l ,  x 2 )  

space centred on (j1, 2,) and with minor axis equal to V(XI)1/2 and major axis equal 
to V(*z)1'2. Such a diagram is referred to as a complex amplitude diagram for the 
squeezed state. In figure l ( c )  we have drawn the complex amplitude diagram for the 
state IO,[). 

3. Parametric amplifier with detuning 

The prototypical system expected to produce squeezed states is the degenerate para- 
metric oscillator. This system may be modelled by the Hamiltonian 

~ = h w ~ a ' a + h ~ ( a * e  e twr+at2E* e-'") (9) 

where wo is the frequency of the degenerate signal/idler mode, E is the classical pump 
field of frequency w,  x is the coupling constant between the pump and signal modes 
and a is the annihilation operator for the signal mode. If we choose the phase of the 
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Figure 1. Complex amplitude diagram for a vacuum state (a),  a squeezed zero-amplitude 
state (b) ,and  a rotated squeezed state (c ) .  

driving field so that X E  is purely imaginary ( X E  = -ilXEI) the interaction may be written 

1 (10) H,  = -ihK(a2 e i w f - a t 2  e-'wf 

where K = IpI. 
In the degenerate case w = wo,  the Hamiltonian (9) generates ideal squeezed states 

in the a, a t  variables with squeeze parameter r = 2 ~ t .  It is the purpose of this paper 
to investigate the behaviour of squeezing away from resonance. 

If we define the variables 6, 6' by 

a =exp (-iwt/2)6 (11) 

da /d t  = i/2Awd + 2 ~ 6 '  dd'ldt = -i/2Awdt+ 2 ~ 6  (12) 

the equations of motion may be written 

where 

Aw = w - 2 ~ 0 .  (13) 

Defining the new quadrature phase operators by 

2, = i ( d + H ' )  2, = (1/2i)(ii - a') (14) 

and the row vector XT(t) = (Rl(t), 22(t)) we have 

(d/dt)X(t)  = A X ( ? )  

where 

2K -Awl2 
Awl2 - 2 K  

A = (  

Clearly if Am=! the two quadratures evolve i!dependently with 2, growing 
exponentially and X 2  dec:ying exponentially. The X 2  quadrature will be squeezed 
while the fluctuations in XI will grow. With A o  # 0 these t y o  quadzatures become 
coupled and we might expect a feedback of fluctuations of XI into X, destroying or 
limiting the squeezing. 
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The solutions to equations (13) may be written in the form 

X( 7 )  = T (  y, &O) 

where 

(1 - y2)"2 

(1  - y 2 ) ' / 2  1 

sinh y r  

cosh y r  - - sinh y r  

= [cosh y r  +; 1 sinh y r  - 

Y 

sinh y r  
Y Y 

and 

T = K f  y = (1  - 6 2 ) ' / '  6 = A w / ~ K  

and (1 - Y ~ ) ' ' ~  has the sign of 6. 
The linear transformation in equation (18) is easily seen to be symplectic (i.e. it 

preserves the commutation relations). The most general symplectic transformation in 
one dimension may be written as a rotation followed by a scale change and another 
rotation (Moshinsky 1973) 

cos e -sin e) (r eor) ( cos IC, -sin IC, 
sin IC, cos IC, 

We find here that 

where 

sinh r = sinh y r /  y 

tan 28 = tanh yr. 
Y 

(1-y2)'/2 

Equivalently equation (17) may be written as 

X( r )  = U+( r )X (O)  U (  7 )  

where 

~ ( 7 )  = e x p [ ( - i ~ / 2 ) ( a a t + a t a ) ]  exp[(-r /2)(a2-af2)]  exp[( - ie /2) (aa t+a+a)]  

= U, (e)S(  - r )  U, ( e).  (24) 
The time development operator U ( T )  may be written in the form 

U ( T )  = ~ ( 5 )  exp [ - i e ( aa++a+a) ]  (25) 

where S ( 5 )  is the general squeeze operator defined in (2) with 5 = - r  e-"'. The second 
factor corresponds to rotations of the canonical variables (see appendix). 

If the system begins in the ground state IO), the state of the system at time r, \IC,( r ) ) ,  
is given by 

l*(r)) = U(d10) = e-"lo, 5). (26) 
In (26) we have used the fact that the rotation operator acting on (0) produces o111y 
a change in phase. The state of the system is thus a rotated squeezed state (see 
appendix). 
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The conditions for any unitary transformation to produce a minimum uncertainty 
state from the vacuum are given in the appendix. Direct comparison of equation (18) 
with these conditioty shows that [ + ! I ( T ) )  will not be a minimum uncertainty state in the 
original variables X. This is also clear from the complex amplitude diagram for a 
rotated squeezed state (figure l ( c ) ) .  The projection of the ellipse axes onto the original 
basis must yield uncertainties greater than is possible for a minimum uncertainty state. 
This implies that the variables for which /+!I( 7 ) )  is a miniyumA uncertainty state are 
rotated by an angle -6  with respect to the original variables XI, X 2 .  We now investigate 
the squeezing in ~ + ! I ( T ) )  in detail. 

4. Time dependence of squeezing in a detuned parametric amplifier 

We see from equations ( 2 1 )  and (22) that both the squeeze parameter and the rotation 
angle of the error ellipse with respect to the original frame are functions of time. In 
the long-time limit, T +  a, we find that the angle of rotation e( t )  approaches the 
limiting value 8, given by 

while the squeeze parameter approaches r,, 

rm= -yT-ln y. 

Figure 2. Action of U ( + )  on the vacuum state (0). 
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Thus eventually the reduction of fluctuations is fouyd in a frame rotated by a constant 
angle -em with respect to the  original variables (XI, 2?) (see figure 3). 

In the original variables XI, X 2  the reduction of fluctuations occurs in the X 2  
quadrature over a limited interval of time. Explicitly we have 

This function 

at  time 

V ( X 2 ( 7 ) )  =:{cosh2 y 7 + [ ( 2 -  y2)/y2]sinh2 y r - ( 2 / y )  cosh yr  sinh yr}.  

decreases from 1 / 4  at  7=0 to a minimum of 

It then increases monotoni5ally for r > 7, and is again equal to 1/4 at  T = 27,. In 
figure 4 we have plotted V ( X 2 ( r ) )  against r for y = 0.9 and K = 1.0, which demonstrates 
this behaviour. 

The  variances of the rotated variables *{, 2; are  given explicitly by 

V(R; ( 7 ) )  =ay-2[(y2+sinh2 yr )* /2+s inh  y ~ ] ~ = $ e ~ ~  

v(k; (7 ) )  = ay-’[( y 2  +sinh2 77) 1 / 2  - sinh y7I2 = e-2r 
(30) 

(31) 

where r is give? by (21). ~ 

state in the rotated variables. 
Clearly V ( X ;  ( T ) )  V ( X ;  (7) )  = 1/16. As expected we have a minimum uncertainty 

The  solutions*for S 2 >  1 areA easily obtained by the replacements y = i A  and A = 
(a2-  1)1’2 as X ( r )  = Q(r ,  A)X(O) with 

sin AT / C O S A T + -  

c 

\ A  

where (1 + A 2 ) ” 2  has the sign of S. 

Figure 3. Error ellipse in the long-time limit 6* s 1. 

- ( I +  A 2 ) ’ l 2  

A 
sin AT 

i sin AT 
COS AT-- 

A 

1 I 

T 
0 1.0 2.0 

Figure 4. V ( & ( r ) )  against r ;  y = 0.9, K = 1.0. 
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The symplectic decomposition is once again Q(T, A )  = R ( B ) L ( y ) R ( O ) ,  with 

sinh y =sin A r / A  (33) 

and 

tan Ar. (34) 
( A 2  + 1)’l2 

A 
tan28 = 

We now find that both the squeeze parameter and rotation angle are oscillating functions 
of time. At t = n r / A  the squeezing is zero and the system is in a coherent state. 

The frame which carries reduced fluctuations is rotated by an angle -8 with respect 
to the original frame, where 

(l+A2)”*sinA7 
[ ( l+A2)  s i n 2 A ~ + A 2 ~ ~ ~ 2 A ~ ] l / 2  

sin 28 = 

A cos AT 
[ ( 1 + A 2 ) s i n 2 A ~ + A 2 ~ ~ ~ 2 A ~ ] 1 / 2 ~  cos 28 = 

(35) 

We now consider the evolution over one period. At T = 0 the system is in a coherent 
state. When r goes from O+ r/2A, the error ellipse rotates in a clockwise direction 
(see figure 5 ( b ) )  and has maximum squeezing in Xi at r = r/2A at an angle 8 = - r / 4  
with respect to the original frame. As r goes from r / 2 A  + r / A  the ellipse continues 
to rotate but ‘unsqueezes’ so that at T = r / A  the system has returned to a coherent 
state (figure 5 ( c ) ) .  From r = r / A  to 7=-3~/2A,  the system squeezes again. The 
reduction of fluctuations now appears in Xi but, due to the continued rotation, the 
error ellipse is in the same orientation with respect to the original frame at T = 3r/2A 
as it was at T = r /2A (figure 5 ( d ) ) .  Finally the system returns once again to a coherent 
state (figure 5 ( e ) ) .  The optimum squeezing is at 8 = r / 4 .  

In the original variables the variances are given by 

v (k l (~ ) )= (1 /4AZ) [ (A2+1) - (cos2A~+A sin2AT)I 

v(k2(r)) =(1/4A2)[(A2+ 1)-(cos 2Ar-A sin  AT)]. 
(37) 

The maximum reduction in fluctuations in these variables is given by 

where T, is such that 

cos 2r,= 1 / l ( A 2 +  1)1’21 sin 2 ~ , = - A / l ( A ~ + 1 ) ~ / ~ (  

while for the k2 quadrature 
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! 

Figure 5. Schematic time dependence of error volume for S > 1: ( a )  T = 0; ( b )  T = r/2A; 
( c )  T = r/A and ( d )  T = 3 r / 2 A .  

In the Xf variables the greatest reduction of fluctuations occurs in 2; at time 
r, = ~ / 2 h  + n2rr /h  and is given by 

while at time r = 3 a / 2 A  + n 2 ~ / h ,  9; carries the $reatest reduction in fluctuations 
with the same minimum value as that given for V ( X ; )  in equation (40). 

To summarise, let us consider theAmaximum reduction in fluctu$ons occurring in 
the original variables. We shall take X,. For all S we have that V ( X 2 )  has a minimum 
of ISl/4(l+lSl). When S = O  the minimum value is zero as expected. As the pump 
field is detuned further from resonance the squeezing diminishes, eventually approach- 
ing the coherent state value of 114. Detuning then, always diminishes the reduction 
of fluctuations obtainable in the original variables. However, as we have shown, there 
always exists a transformed set of variables for which the reduction of fluctuations is 
greater than that in the original variables. Fomparing equations (44) and (45) we see 
that for 6 >  1 the transformed variable X ;  has a minimum variance 0.25/(l+lSl) 
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below that obtainablejn the original variable g2. For Sz < 1 the fluctuations in the 
transformed variable X; can be made %rbitrarily small for large T. It should be noted 
though that the necessary rotation to X i  is itself time dependent. 
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Appendix 

In this appendix we wish to state, firstly, under what conditions linear canonical 
transformations produce minimum uncertainty states and secondly how such transfor- 
mations induce transformations in the complex amplitude diagram. 

Let U be a unitary representation of an element of Sp(2n: R), the group of linear 
canonical transformations. We then define the matrices M by 

U’XU = MX 

where 

XT= (R;, 2:. . . R;, R;, R;, . . .R; ) 

and A ,  BI C, D are real n x n matrices. The state I$) = U(0)  is a minimum uncertainty 
state in X if and only if a real diagonal matrix A exists such that (Milburn 1983) 

A = D A  C = - B A .  (A3), (A41 

We may obtain a simple pictorial understanding of why some transformations do 
not produce minimum uncertainty states for a given X, by considering how the 
transformations effect the Wigner function phase space (i.e. the complex amplitude 
diagram). For simplicity we shall consider the one-dimensional case. 

The definition of the Wigner function W(x) for a state p is well known (Louise11 
1973). In one dimension it may be written 

W(x) =? exp(-ixT - u ) c ” ( u )  du 4T  ’ I  
where 

c ” (  U )  = Tr{p exp(iuT * X)} 

is the characteristic function, and where 
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The Wigner function for the oscillator ground state ( p  = )O)(Ol> is easily shown to be 

W ( x , ,  x 2 )  = (2/7r) expE-+xTA,lx] 
where 

A ,=~I .  

The complex amplitude diagram for 10) is then obtained by plotting the quadratic form 
xTA,'x = 1 i.e. x :  + x: = $. This is simply a circle centred on the origin. 

Consider the state I $ ) =  VlO) where U is a unitary operator corresponding to a 
linear canonical transformation. We now find the Wigner function for I$) from the 
Wigner function for 10) by determining how U transforms points in {x,, x 2 }  space. The 
characteristic function is given by 

c w ( u )  =(o~u' exp(iu'- X ) U ~ O ) .  

Now define the matrix M by 
X f  = U'Xu = MX. 

Then 

c w ( u )  = (01 exp(iufT * X)~O) 

where 

U' = MTu. (A121 
We easily find that c w ( u )  =exp[-iurTAOu'] with A. given in equation (A10). 

The Wigner function is then given as 

W ( x )  = - exp(-ixT * U )  e x ~ - $ d T A o u f }  du. 
47r2 ' I  

Under the change of variable U' = M T u  this becomes 

W ( x )  =? exp(-ixIT - U') e~p[- fu '~A,u ' ]  du' 
4 T  'I 

where 

(A131 
and we have used the fact that the Jacobian of the transformation in equation (A12) 
is one. We then find 

x' = M - ' x  

W ( x )  = (2/7r) e~pE-+x'~A;'x~].  (A141 
The quadratic form, which defines the complex amplitude diagram for 11)) in the 

new variables XI, is still a circle. In terms of the original variables of course it may 
look quite different. 

The interpretation of the quadratic form xTA;lx, which defines the complex 
amplitude diagram, is facilitated by regarding xl, x2 as the coordinates of a point A, 
with respect to the orthogonal unit basis vectors e,, e2. The transformation in (A13) 
may then be considered as expressing the coordinates of A with respect to a new basis 
el ,  e; where 
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As an example of the above considerations, consider the squeezed state IO,,$) = 
S(t)(O) (see (2)). The matrix representation of S ( 5 )  is 

cosh r - sinh r cos 2 6 
-sinh r sin 28 

-sinh r sin 28 
cosh r+sinh r cos 28 

M = (  

Direct insEection of M together with (A3) shows that IO,() is not a minimum uncertainty 
state for X. 

We now construct the complex amplitude diagram for IO,[). S ( 5 )  may be disen- 
tangled as 

S ( 6 )  = UR(-e/Z)S(r) uR(e/2) ( ~ 1 7 )  

where the operators are defined in equation (24). The matrix representations of U, 
and S are respectively 

cos 612 -sin 8/2 
sin 812 cos 812 R(8/2)  = ( 

L(r)  = ( O ) .  
0 e' 

R(8 /2)  effects a rotation of the basis given by 

while L( r )  effects a scale change of the basis given by 

While the unit circle in bases related by R(812) are identical, the unit circle in the 
basis el,, e;, given by (A21), will appear as an ellipse in the original basis e,, e, (see 
figure l (b) ) .  

We are now in a position to construct the complex amplitude diagram for the state 
10, ,$)= UR(-8/2)S(r)UR(8/2)10). The state uR(8/2)lo) differs from the vacuum by 
a phase factor only, thus the complex amplitude diagram for IO,() is identical to that 
for the state Ur(-8/2)S(r)[O). (This is also seen by noting that the circular quadratic 
form associated with 10) is invariant under rotations.) The state S(r)(O) is represented 
by a circular quadratic form in a basis contracted along e, and dilated along e, (A21). 
Thus in the original basis S(r)lO) appears as an ellipse (figure l (b)) .  The final rotation 
uR(-8/2) acting on S(r)lO) produces a state represented by a circular quadratic 
form in the scaled basis { e ; ,  e;}, but rotated by -812 with respect to the original basis. 
The result viewed from the original basis is shown in figure l ( c ) .  The complex 
amplitude diagram for the state IO,,$) is an ellipse rotated by -8/2 with respect to the 
original basis. 

It is now clear that 10, 5) will not be a minimum uncertainty state with respect to 
the original variables x. However, it is a minimum uncertainty state with respect to 
the rotated variables y where 

y = R ( - 8 / 2 ) ~  
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or in terms of the corresponding operators 

e =  R ( 0 / 2 ) X  

that is 

9 1 + i ? 2 = ( 2 1 + i 2 2 )  exp(-i0/2). 

The explicit form of the Wigner function for the (unrotated) squeezed state 10, r )  is 
(from (A19) and (A14)) 

(A231 
2 w = - e x p ( - 2 [ ( x , - ~ , ) ~  e2’+(x2-Z2I2 
7l 

where f, = (ii). 
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